Jumping nonlinearities and weighted Sobolev spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

compactifications and function spaces on weighted semigruops

chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...

15 صفحه اول

Weighted Sobolev Spaces and Degenerate Elliptic Equations

In the case ω = 1, this space is denoted W (Ω). Sobolev spaces without weights occur as spaces of solutions for elliptic and parabolic partial differential equations. In various applications, we can meet boundary value problems for elliptic equations whose ellipticity is “disturbed” in the sense that some degeneration or singularity appears. This “bad” behaviour can be caused by the coefficient...

متن کامل

The Kawahara equation in weighted Sobolev spaces

Abstract The initialand boundary-value problem for the Kawahara equation, a fifthorder KdV type equation, is studied in weighted Sobolev spaces. This functional framework is based on the dual-Petrov–Galerkin algorithm, a numerical method proposed by Shen (2003 SIAM J. Numer. Anal. 41 1595–619) to solve third and higher odd-order partial differential equations. The theory presented here includes...

متن کامل

Interpolation Inequalities in Weighted Sobolev Spaces

In this paper we prove some interpolation inequalities between functions and their derivatives in the class of weighted Sobolev spaces defined on unbounded open subset Ω ⊂ Rn .

متن کامل

On weighted critical imbeddings of Sobolev spaces

Our concern in this paper lies with two aspects of weighted exponential spaces connected with their role of target spaces for critical imbeddings of Sobolev spaces. We characterize weights which do not change an exponential space up to equivalence of norms. Specifically, we first prove that Lexp tα(χB) = Lexp tα(ρ) if and only if ρq ∈ Lq with some q > 1. Second, we consider the Sobolev space W ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2005

ISSN: 0022-0396

DOI: 10.1016/j.jde.2004.11.005